Advanced Higher Applied Mathematics (Mechanics)

Unit 2

Outcome 2.1 Motion In A Horizontal Circle	NS	OT	VG
I know the meaning of angular velocity and angular			
acceleration.			
I know that for motion in a circle where $\theta = \omega t$ then:			
$\mathbf{r} = \mathbf{r}\cos(\omega t)\mathbf{i} + \mathbf{r}\sin(\omega t)\mathbf{j}$			
$\mathbf{v} = -\mathbf{r}\omega \sin(\omega t)\mathbf{i} + \mathbf{r}\omega \cos(\omega t)\mathbf{j}$			
$\mathbf{a} = -\mathbf{r}\omega^2 \cos(\omega t)\mathbf{i} - \mathbf{r}\omega^2 \sin(\omega t)\mathbf{j}.$			
I know that, from the above,:			
$\mathbf{v} = \mathbf{r}\omega, \ \mathbf{a} = \omega^2 \mathbf{r} = \mathbf{v}^2 / \mathbf{r} \text{ and } \mathbf{a} = -\omega \mathbf{r}.$			
I can apply the above equations to motion in a horizontal			
circle with uniform angular velocity including skidding,			
banking, conical pendulum and other applications.			
I know Newton's inverse square law of gravitation, namely			
$F \alpha^{1/r^2}$			
I can apply Newton's inverse square law of gravitation to			
simplified examples of motion of satellites and moons for			
circular orbits only.			
I can find the time for one orbit and the height above the			
surface etc.			

Outcome 2.2 Relative Position and Velocity	NS	OT	VG
I know the meaning of the terms <i>relative position, relative</i>			
velocity and relative acceleration, air speed, ground speed			
and <i>nearest approach</i> .			
I am familiar with notation for relative position, velocity and			
acceleration vectors of 2 objects.			
I can resolve vectors into components.			
I can differentiate and integrate vector functions in time.			
I can use position, velocity and acceleration vectors to solve			
practical problems.			
I can solve problems involving collision courses and nearest			
approach.			

Outcome 1.3 Motion of Projectiles in a Vertical Plane	NS	OT	VG
I know the meaning of the terms <i>projectile</i> , <i>velocity</i> , <i>angle of projection</i> , <i>trajectory</i> , <i>time of flight</i> , <i>range</i> and <i>constant gravity</i> .			
I can solve the vector equation $\ddot{r} = -gj$ to obtain r in terms of			

its horizontal and vertical components.		
I can obtain and solve the equations of motion $\ddot{x} = 0$, $\ddot{y} = -g$,		
obtaining expressions for \dot{x} , \dot{y} , x and y in any particular case.		
I can find the time of flight, greatest height reached and the		
range of a projectile.		
I can find the maximum range of a projectile on a horizontal		
plane and the angle of projection to achieve this.		
I can find, and use, the equation of the trajectory of a		
projectile.		
I can solve problems in two-dimensional motion involving		
projectiles under a constant gravitational force and		
neglecting air resistance.		

Outcome 1.4 Forces and Newton's Laws of Motion	NS	OT	VG
I can understand the terms mass, force, weight, momentum,			
balanced and unbalanced forces, resultant force, equilibrium			
and resistive forces.			
I know Newton's first and third laws of motion.			
I can resolve forces in two dimensions to find their			
components.			
I can combine forces to find a resultant force.			
I can understand the concept of static and dynamic friction			
and limiting friction.			
I understand the terms frictional force, normal reaction,			
coefficient of friction μ , angle of friction λ , and know the			
equations $F = \mu R$ and $\mu = \tan \theta$.			
I can solve problems involving a particle or body in			
equilibrium under the action of certain forces.			
I know Newton's second law of motion, that force is the rate			
of change of momentum, and derive the equation $F = ma$.			
I can use this equation to form equations of motion to model			
practical problems on motion in a straight line.			
I can solve such equations modelling motion in one			
dimension, including cases where the acceleration is			
dependent on time.			
I can solve problems involving friction and problems on both			
rough and smooth inclined planes.			